Minor Gas Observations

AIRS Science Team Meeting

L.L. Strow, S.E. Hannon, Sergio De Souza-Machado, and H.E.
Motteler
UMBC Physics Department

March 8, 2006

Overview

- Minor gases (and aerosols) are both an asset and a nuisance for AIRS
- My perspective: performance and validation of RTA, use of radiances for climate monitoring
- Minor gases and dust must be taken into account for T(z) and H₂O (z) products, and for future climate applications
 - \bigcirc HNO₃?
 - CO₂ for climate change monitoring
 - 3 CH₄ for sources and sinks
 - 4 CO for atmospheric chemistry
 - Volcanic SO₂ and ash for sulfur budget, aircraft safety
- We are finding more and more channels are impacted by variable gases
- AIRS, followed by IASI on METOP and CrIS on NPOESS can
 potentially provide new information on the long-term
 variability of a number of minor gases. Special chemistry
 satellite missions come and go.

May 2004 Monthly Means of HNO₃

- RTA modified to include variable HNO₃
- Used L2 retrievals, just varied scalar multiplier of HNO₃ column
- HNO₃ unit is (observed column)/(reference column). Reference column is $\approx 10^{14}$ mol/cm²
- Ocean only

HNO₃ Signal in Polar Granule Residuals

Very Rough Validation versus MIPAS

May 2004 HNO3 Retrievals Binned by Week

GEOS-CHEM: Sept. 20-21, 2004, 220 and 310 mbar

GEOS-CHEM: Sept. 20-21, 2004, 430 and 600 mbar

B(T) Influence for 1X Change in HNO₃, Channel 1440

- About 5 channels this sensitive
- 189 AIRS channels have $dB(T)/d(HNO_3 = 1X) > 0.1K$

Day:

Conclusions: HNO₃

- AIRS has good sensitivity to HNO₃
- Signals arising from range of profiles, unlikely to have much profile information.
- Retrievals must avoid, or take into account, channels sensitive to HNO₃
- Climate studies with AIRS should take HNO₃ into account, or avoid spectrally
- Solar flares can greatly increase HNO₃ and impact AIRS retrievals.

CO₂ Climatology with AIRS

- Presented in previous meetings
- Good agreement with CMDL
- Longwave and shortwave agree very well, implies that my use of ECMWF temperature fields for these statistical measurements is OK since shortwave is ~2X more temperature sensitive
- The best channels by far are in the 2400 cm⁻¹ shortwave region
- We will soon have processed more than 3-years of data

Good Agreement Between Short and Longwave CO2

Comparison to Matsueda

CO₂ Climatology: Short and Long Wave vs CMDL

A Possible Phase Lag Relative to CMDL

Phase Reversal in S. Hemis. Seen

SO₂ Signal; Variable SO₂ Now in RTA

Mt. Etna Eruption 2002, Retrieved SO₂ and Ash Optical Depths

See GRL paper, Jan. 2005

High Altitude CH₄

Mineral Dust

Work continues on dust retrievals. See GRL paper, Feb. 2006

Conclusions

Very few AIRS channels are free from "contamination" by variable minor gases and water vapor. Climate studies will require careful attention to their role in the radiances.

